Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.194
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710051

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Neuroacanthocytosis , Vesicular Transport Proteins , Humans , Animals , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/genetics , Neuroacanthocytosis/physiopathology , Neuroacanthocytosis/pathology , Mutation , Lipid Metabolism/physiology , Lipid Metabolism/genetics
2.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724488

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Adenocarcinoma of Lung , Autophagy-Related Proteins , Autophagy , Disease Progression , Lung Neoplasms , MicroRNAs , Particulate Matter , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Particulate Matter/adverse effects , Autophagy/genetics , Gene Expression Regulation, Neoplastic , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Cell Proliferation/genetics , A549 Cells , Cell Line, Tumor , Adaptor Proteins, Vesicular Transport
3.
Sci Rep ; 14(1): 10146, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698024

The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.


Endosomes , Vesicular Transport Proteins , Endosomes/metabolism , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Lysosomes/metabolism , Protein Subunits/metabolism , Autophagy , Autophagosomes/metabolism , HeLa Cells , Protein Binding
4.
Sci Rep ; 14(1): 10160, 2024 05 03.
Article En | MEDLINE | ID: mdl-38698045

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


COP-Coated Vesicles , Carrier Proteins , Cystic Fibrosis Transmembrane Conductance Regulator , Protein Transport , Vesicular Transport Proteins , Humans , COP-Coated Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Ubiquitination , Proteolysis
5.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article En | MEDLINE | ID: mdl-38715125

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Animals
6.
CNS Neurosci Ther ; 30(4): e14707, 2024 04.
Article En | MEDLINE | ID: mdl-38584329

AIMS: Mitochondria-associated endoplasmic reticulum membranes (MAMs) serve as a crucial bridge connecting the endoplasmic reticulum (ER) and mitochondria within cells. Vesicle-associated membrane protein-associated protein B (VAPB) and protein tyrosine phosphatase interacting protein 51 (PTPIP51) are responsible for the formation and stability of MAMs, which have been implicated in the pathogenesis of various diseases. However, the role of MAMs in ischemic stroke (IS) remains unclear. We aimed to investigate the role of MAMs tethering protein VAPB-PTPIP51 in experimental cerebral ischemia. METHODS: We simulated cerebral ischemia-reperfusion injury (CIRI) by using a mouse middle cerebral artery occlusion (MCAO) model. RESULTS: We observed a decrease in VAPB-PTPIP51 expression in the brain tissue. Our findings suggested compromised MAMs after MCAO, as a decreased mitochondria-ER contact (MERC) coverage and an increased distance were observed through the transmission electron microscope (TEM). Upon VAPB or PTPIP51 knockdown, the damage to MAMs was exacerbated, accompanied by excessive autophagy activation and increased reactive oxygen species (ROS) production, resulting in an enlarged infarct area and exacerbated neurological deficits. Notably, we observed that this damage was concomitant with the inhibition of the PI3K/AKT/mTOR pathway and was successfully mitigated by the treatment with the PI3K activator. CONCLUSIONS: Our findings suggest that the downregulation of VAPB-PTPIP51 expression after IS mediates structural damage to MAMs. This may exacerbate CIRI by inhibiting the PI3K pathway and activating autophagy, thus providing new therapeutic targets for IS.


Ischemic Stroke , Reperfusion Injury , Humans , Ischemic Stroke/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mitochondrial Proteins , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Autophagy , Vesicular Transport Proteins/metabolism
7.
Nat Commun ; 15(1): 3215, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615096

Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.


Heat-Shock Proteins, Small , Intranuclear Inclusion Bodies , Vesicular Transport Proteins , DNA Damage , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
8.
J Cell Biol ; 223(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38558237

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Aryl Hydrocarbon Receptor Nuclear Translocator , Drosophila , Endoplasmic Reticulum , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , COP-Coated Vesicles/metabolism , Drosophila/cytology , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport/physiology , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672477

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
10.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38652741

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Decorin , Lymphangiogenesis , Decorin/metabolism , Decorin/genetics , Animals , Mice , Humans , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Cell Line, Tumor , Disease Progression , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Gene Expression Regulation, Neoplastic
11.
J Cell Biol ; 223(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38652246

The regulation of intracellular membrane traffic is coupled with the cell's need to respond to environmental stimuli, which ultimately is critical for different processes such as cell growth and development. In this issue, Wiese et al. (https://www.doi.org/10.1083/jcb.202311125) explore the role of the trans-Golgi network (TGN) in stress response, exposing its role in mediating adaptive growth decisions.


Plant Proteins , Vesicular Transport Proteins , trans-Golgi Network , Adaptation, Physiological , Plant Proteins/metabolism , Plants , Stress, Physiological , trans-Golgi Network/metabolism , Vesicular Transport Proteins/metabolism
12.
Mol Biol Cell ; 35(6): ar76, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38598303

Endosomal coats incorporate membrane-binding subunits such as sorting nexin (SNX) proteins. The Saccharomyces cerevisiae SNX-BAR paralogs Vin1 and Vps5 are respective subunits of the endosomal VINE and retromer complexes whose dimerizing BAR domains are required for complex assembly and membrane association. However, a degree of promiscuity is predicted for yeast BAR-BAR pairings, and recent work has implicated the unstructured N-terminal domains of Vin1 and Vps5 in coat formation. Here, we map N-terminal signals in both SNX-BAR paralogs that contribute to the assembly and function of two distinct endosomal coats in vivo. Whereas Vin1 leverages a polybasic region and adjacent hydrophobic motif to bind Vrl1 and form VINE, the N-terminus of Vps5 interacts with the retromer subunit Vps29 at two sites, including a conserved hydrophobic pocket in Vps29 that engages other accessory proteins in humans. We also examined the sole isoform of Vps5 from the milk yeast Kluyveromyces lactis and found that ancestral yeasts may have used a nested N-terminal signal to form both VINE and retromer. Our results suggest that the specific assembly of Vps5-family SNX-BAR coats depends on inputs from unique N-terminal sequence features in addition to BAR domain coupling, expanding our understanding of endosomal coat biology.


Endosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sorting Nexins , Vesicular Transport Proteins , Endosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sorting Nexins/metabolism , Sorting Nexins/genetics , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Protein Binding , Protein Domains , Humans , Amino Acid Sequence
13.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532508

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Capillaries/abnormalities , Sturge-Weber Syndrome , Vascular Malformations , Humans , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/pathology , Sturge-Weber Syndrome/therapy , Endothelial Cells/metabolism , Capillaries/pathology , Macrophages/metabolism , Tumor Microenvironment , Vesicular Transport Proteins/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
14.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498238

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Valproic Acid/pharmacology , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Protein p53 , Drug Resistance, Multiple/genetics , Apoptosis , Cell Line, Tumor , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/pharmacology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/pharmacology , Vesicular Transport Proteins/therapeutic use
15.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38478017

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Membrane Fusion , Munc18 Proteins , SNARE Proteins , Saccharomyces cerevisiae Proteins , Munc18 Proteins/metabolism , Protein Binding , Qa-SNARE Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicular Transport Proteins/metabolism
16.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38478018

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Cytoplasmic Vesicles , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Mammals/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Munc18 Proteins/analysis , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicular Transport Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
17.
Mol Biol Cell ; 35(5): ar71, 2024 May 01.
Article En | MEDLINE | ID: mdl-38536444

Membrane fusion is regulated by Rab GTPases, their tethering effectors such as HOPS, SNARE proteins on each fusion partner, SM proteins to catalyze SNARE assembly, Sec17 (SNAP), and Sec18 (NSF). Though concentrated HOPS can support fusion without Sec18, we now report that fusion falls off sharply at lower HOPS levels, where direct Sec18 binding to HOPS restores fusion. This Sec18-dependent fusion needs adenine nucleotide but neither ATP hydrolysis nor Sec17. Sec18 enhances HOPS recognition of the Qc-SNARE. With high levels of HOPS, Qc has a Km for fusion of a few nM. Either lower HOPS levels, or substitution of a synthetic tether for HOPS, strikingly increases the Km for Qc to several hundred nM. With dilute HOPS, Sec18 returns the Km for Qc to low nM. In contrast, HOPS concentration and Sec18 have no effect on Qb-SNARE recognition. Just as Qc is required for fusion but not for the initial assembly of SNAREs in trans, impaired Qc recognition by limiting HOPS without Sec18 still allows substantial trans-SNARE assembly. Thus, in addition to the known Sec18 functions of disassembling SNARE complexes, oligomerizing Sec17 for membrane association, and allowing Sec17 to drive fusion without complete SNARE zippering, we report a fourth Sec18 function, the Sec17-independent binding of Sec18 to HOPS to enhance functional Qc-SNARE engagement.


Membrane Fusion , Saccharomyces cerevisiae Proteins , Vesicular Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Vacuoles/metabolism
18.
Nat Commun ; 15(1): 2404, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493152

ERGIC-53 transports certain subsets of newly synthesized secretory proteins and membrane proteins from the endoplasmic reticulum to the Golgi apparatus. Despite numerous structural and functional studies since its identification, the overall architecture and mechanism of action of ERGIC-53 remain unclear. Here we present cryo-EM structures of full-length ERGIC-53 in complex with its functional partner MCFD2. These structures reveal that ERGIC-53 exists as a homotetramer, not a homohexamer as previously suggested, and comprises a four-leaf clover-like head and a long stalk composed of three sets of four-helix coiled-coil followed by a transmembrane domain. 3D variability analysis visualizes the flexible motion of the long stalk and local plasticity of the head region. Notably, MCFD2 is shown to possess a Zn2+-binding site in its N-terminal lid, which appears to modulate cargo binding. Altogether, distinct mechanisms of cargo capture and release by ERGIC- 53 via the stalk bending and metal binding are proposed.


Membrane Proteins , Vesicular Transport Proteins , Vesicular Transport Proteins/metabolism , Protein Binding , Membrane Proteins/metabolism , Binding Sites , Golgi Apparatus/metabolism , Mannose-Binding Lectins/metabolism
19.
Mol Carcinog ; 63(5): 803-816, 2024 May.
Article En | MEDLINE | ID: mdl-38411267

Ovarian cancer is a major cause of death among cancer patients. Recent research has shown that the transmembrane emp24 domain (TMED) protein family plays a role in the progression of various types of cancer. In this study, we investigated the expression of TMED3 in ovarian cancer tumors compared to nontumor tissues using immunohistochemical staining. We found that TMED3 was overexpressed in ovarian cancer tumors, and its high expression was associated with poor disease-free and overall survival. To understand the functional implications of TMED3 overexpression in ovarian cancer, we conducted experiments to knockdown TMED3 using short hairpin RNA (shRNA). We observed that TMED3 knockdown resulted in reduced cell viability and migration, as well as increased cell apoptosis. Additionally, in subcutaneous xenograft models in BALB-c nude mice, TMED3 knockdown inhibited tumor growth. Further investigation revealed that SMAD family member 2 (SMAD2) was a downstream target of TMED3, driving ovarian cancer progression. TMED3 stabilized SMAD2 by inhibiting the E3 ligase NEDD4-mediated ubiquitination of SMAD2. To confirm the importance of SMAD2 in TMED3-mediated ovarian cancer, we performed functional rescue experiments and found that SMAD2 played a critical role in this process. Moreover, we discovered that the PI3K-AKT pathway was involved in the promoting effects of TMED3 overexpression on ovarian cancer cells. Overall, our study identifies TMED3 as a prognostic indicator and tumor promoter in ovarian cancer. Its function is likely mediated through the regulation of the SMAD2 and PI3K-AKT signaling pathway. These findings contribute to our understanding of the molecular mechanisms underlying ovarian cancer progression and provide potential targets for therapeutic intervention.


Ovarian Neoplasms , Vesicular Transport Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad2 Protein/pharmacology , Ubiquitination , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism
20.
Biol Pharm Bull ; 47(2): 509-517, 2024.
Article En | MEDLINE | ID: mdl-38403661

(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.


Catechin , Vesicular Transport Proteins , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Synaptic Vesicles/metabolism , Tea/chemistry , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
...